Competency in Electrocardiogram interpretation among sixth year undergraduate medical students at Maseno University, Kenya: Pre-test-Post-test Quasi Experimental study Design

> Dr. Sylviah Aradi Dr. Norman Demba

Introduction

- Electrocardiogram (ECG) examination is one of the most frequent administered diagnostic tests¹.
- Important test in diagnosing various cardiovascular abnormalities ¹.
- Competency in accurate reading of an ECG can be lifesaving².
- Incorrect interpretation of ECG results in adverse patient outcomes ³.
- Competency in ECG interpretation is expected from graduating medical students

Study objective

 To evaluate the competency in ECG interpretation among sixth year undergraduate medical students at Maseno University, Kenya.

Methodology

• Study design :

This was a one-arm Pre-test-Post-test quasi experimental study.

Methods:

- 20 questions were administered focusing on the ability of the medical students to identify abnormal and normal ECG patterns.
- The patterns were for common conditions encountered in practice.
- These questions were administered to the medical students before and after they were taught ECG interpretation during cardiology lectures.
- The questions were shuffled during post-test evaluation.

Methodology

Data analysis

- Statistical Package for Social Sciences version 25 was used to analyze the results.
- Paired t-test and descriptive statistics was used in the data analysis

- In this study, a total of 61 sixth year undergraduate medical students at Maseno University participated.
- Mean performance at Pre-test was 58.11% and after the teaching was 74%.
- The ST elevation myocardial infarction and atrial flutter were both correctly interpreted by the students scoring a mean of 90.2% at Pretest and 96.7% at Post-test.
- The study observed a decline in performance with regards to interpretation of left bundle branch block where the students scored a mean of 27.9% at Pre-test and 24.6% at Post-test.

- The paired samples had a positive correlation of **0.219** implying that students who scored very low in Pre-test tend to improve by scoring higher marks after the training in their Post-test evaluation.
- In the actual statistical test, it was observed that the mean difference was -15.902, with a 95% confidence interval of the mean difference -19.342 to -12.461. The t value was -9.246 and the degree of freedom was 60 and the P value < 0.0001*

ECG patterns	Pre-test % (n)	Post-test % (n)
Normal ECG	85.3% (52)	100% (61)
 Atrial fibrillation 	52.5% (32)	77.1% (47)
 ST elevation myocardial infarction 	90.2% (55)	96.7% (59)
 Non ST elevation myocardial infarction 	49.2% (30)	52.5% (32)
 Hyperkalemia 	78.7% (48)	83.6% (51)
 Atrial flutter 	90.2% (55)	95.1% (58)
 Left bundle branch block 	27.9% (17)	24.6% (15)**
 Right bundle branch block 	19.7% (12)	31.2% (19)
 Sinus bradycardia 	88.5% (54)	96.7% (59)
 Third degree heart block 	18.0% (11)	65.6% (40)

ECG patterns

- Sinus tachycardia
- First degree heart block
- Premature ventricular contractions
- Ventricular tachycardia
- Acute pericarditis
- Left ventricular hypertrophy
- Asystole
- Ventricular tachycardia
- Right ventricular hypertrophy
- Supraventricular tachycardia

Pre-test % (n)
90.2% (55)
34.4% (21)
49.2% (30)
75.4% (46)
16.4% (10)
34.4% (21)
75.4% (46)
70.5% (43)
54.1% (33)
73.8% (45)

Post-test % (n) 95.1% (58) 34.4% (21) 60.7% (37) 98.4% (60) 34.4% (21) 47.5% (29) 88.5% (54) 88.5% (54) 81.9% (50) 96.7% (59)

Discussion

- The findings of this current study showed average performance at pre-test and good performance at post-test in ECG interpretation.
- The results of this study was inconsistent with several studies globally, regionally and locally ^{4, 5, & 6} that recorded suboptimal performance.
- Other studies ^{2, 7, & 8} have also demonstrated low overall levels of competency among junior doctors regardless of grade.

Discussion

- This present study attributes the good performance in ECG interpretation at Pre-test to emergency medicine teachings administered while in their fifth year.
- Our hypothetical reason for the good performance is consistent with a study ^{13,} that observed that competency in ECG interpretation significantly improves by increased exposure to ECG, instructional and occupational experience

Discussion

- In our study, summative approach was used in the assessment of competency in ECG interpretation among the students.
- Studies ^{4, 9} have shown that it is not possible to recommend a specific teaching method over another because different strategies will be optimal for different learners, and there is no single medical pedagogy that is superior to another.
- Student centered learning and formative teaching have poor outcomes when it comes to ECG interpretation skills ⁹.

Study limitation

 The study did not adopt a comparison or control group, hence these findings cannot authoritatively demonstrate that the teaching after the Pre-test had a reliable effect on the performance as demonstrated in the Post-test results

Conclusion

- There was a statistically significant improvement in the Electrocardiogram interpretation among sixth year undergraduate medical students at Maseno University, Kenya after formal teaching.
- Competency in ECG interpretation among medical students remains a critically important diagnostic tool in medicine since these diagnosis have serious implications for the patient care.

Recommendation

 Adopt a two-arm Pre-test-Post-test quasi experimental study design so that a reliable effect of teaching is established.

 To facilitate better ECG interpretation skills, undergraduate curriculum to consider having repeated teaching to enhance competency.

Thank you for your time and attention

Selected references used

Abdalla, A. A., & Khanra, D. (2022). Electrocardiography Interpretation Proficiency Among Medical Doctors of Different Grades in the United Kingdom. *Cureus*, 14(9).

Al Mousa, A. M., Alhubail, F. M., Almulhim, M., AlBeladi, B. A., Almulhim, N. A., Almulhim, A. A., ... & Algouf, I. (2023). Electrocardiogram interpretation competency of medical interns in Saudi Arabia: a cross-sectional study. *Cureus*, *15*(4).

Breen, C. J., Kelly, G. P., & Kernohan, W. G. (2022). ECG interpretation skill acquisition: A review of learning, teaching and assessment. *Journal of electrocardiology*, 73, 125-128.

Jablonover, R. S., Lundberg, E., Zhang, Y., & Stagnaro-Green, A. (2014). Competency in electrocardiogram interpretation among graduating medical students. *Teaching and learning in medicine*, 26(3), 279-284.

Oluga Fredrick. (2019). Competencies in ECG interpretation among newly Graduated Medical students at University of Nairobi, School of Medicine. Mmed Thesis

Vishnevsky, G., Cohen, T., Elitzur, Y., & Reis, S. (2022). Competency and confidence in ECG interpretation among medical students. *International Journal of Medical Education*, *13*, 315.

Waechter, J., Reading, D., Lee, C. H., & Walker, M. (2019). Quantifying the medical student learning curve for ECG rhythm strip interpretation using deliberate practice. *GMS journal for medical education*, *36*(4).