USING CLINICAL RESEARCH AS A TOOL FOR IMPROVINGING CLINICAL COMPETENCES AMONG CLINICAL STUDENTS

Dr. Walter Otieno

Maseno School of Medicine

Clinical Research

- "The systematic investigation into and study of materials and sources in order to establish facts and reach new conclusions."
- Good Clinical Practice (GCP) is the basis for quality and human subject safety in all clinical research and provides guidance that must be strictly adhered to before, during, and after a research study is undertaken
- Research is critical to improving patient outcomes and the quality of healthcare.
 - It helps us to understand what works, what doesn't work, and why.
 - Research is essential for developing new treatments and therapies.
 - Research: lifesaving vaccines and medications that we take for granted today.

Clinical Research

- Research, clinical care, and education are very important for any country including our country Kenya.
- Hospitals with heavy research components have better outcome which is also tied to availability of funds and funding opportunities.
- Mentoring is important:
 - Productivity
 - Career development
 - Leadership skills
 - Work culture
 - Collaboration
 - Essential in supporting ongoing research activity

Is research important for undergraduates?

- Improve your communication skills
- Find opportunities to present and publish your ideas
- Test your determination and perseverance
- Develop
 - Creativity/innovation
 - Problem-solving
 - Intellectual independence

How do you engage medical students in research?

- Educate students on the benefits of research
- Encourage students to
 - Take initiative to create opportunities for themselves
 - Undertake extracurricular research
 - Network with other researchers
 - Engage with student-selected components of their courses
 - Attend scientific conferences
 - Do research during elective placements
- Emphasize research as a learning process

Picking your research project: The 3 Ps

- Person
 - Are you ready
- Project
 - Which project...
 - Basic or Laboratory-based research
 - Clinical Trials
 - Epidemiological Research
- Place
 - Is the place known for that type of research
- Plus, professional and Personal Development
 - Learning a new research method
 - Writing a grant proposal or research protocol, or submitting to research ethics?
 - Training courses could you attend to support your personal and professional development?

Making the most of research opportunities

- Presentation
 - National or international meetings
 - Build network
 - Improve your presentation skills
- Prizes and awards
 - Student awards
 - Conference prizes
- Publications
 - Preferably peer reviewed

Challenges and barriers to establishing and sustaining a Clinical Research

- Financial and human capacity
 - Funding
 - Skilled personnel
- Ethical and regulatory system obstacles
 - Delayed approval
 - Tortuous approval processes
- Lack of research environment
 - Infrastructure
 - Conducive environment
- Operational barriers
 - Unsupportive administration
- Competing demands
 - Lack of time
 - Other competing demands

Conducive Environment for Clinical Research

- Sponsor
 - Effective communication
- Regulators
 - Rigorous but less tortuous processes
- CROs
 - Proactive
- Vendors
- Investigators

High Impact research from students

BACTERIAL PATHOGENS AND ANTIBIOTIC SUSCEPTIBILITY PATTERNS AMONG NEONATES WITH SEPSIS AT KENYATTA NATIONAL HOSPITAL, NEWBORN UNIT.

Table 3. Organisms isolated

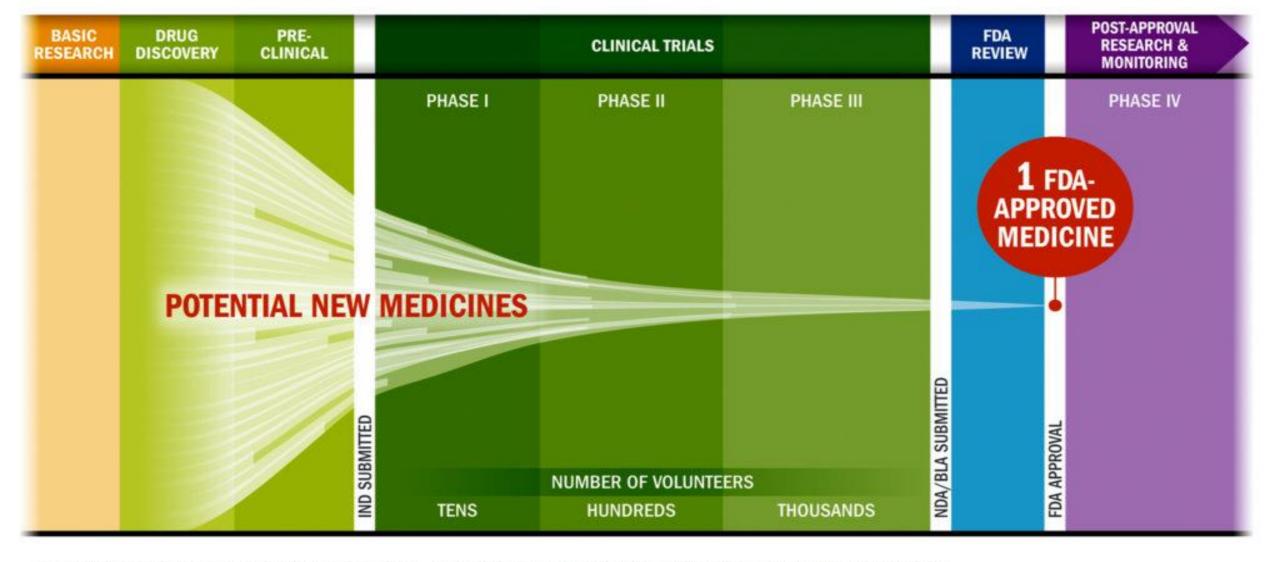

	Isolates	n=158(%)
1.	Klebsiella pneumoniae	43 (28.9)
2.	Staph epidermidis	27(18.1)
3.	Pantoea agglomerans	18(12.1)
4.	Serratia marcescens	15(10.1)
5.	Enterococcus faecalis	11(7.4)
6.	Staph haemolyticus	8(5.4)
7.	Micrococcus species	4(2.7)
8.	Coagulase negative staph	4(2.7)
9.	E. coli	3(2.0)
10.	Other bacteria	15(9.3)

Table 4. Susceptibilities of commonly used antibiotics

	Antibiotic	Totals	Sensitive	Intermediate	Resistant
		isolates	(%)	(%)	(%)
1	Amikacin	83	73(88)	9(11)	1(1)
2	Amoxicillin/Clavulanate	82	4(5)	18(22)	60(73)
3	Benzylpenicillin	46	3(7)	0(0)	43(93)
4	Ceftazidime	81	2(2)	1(1)	78(96)
5	Ceftriaxone	85	2(2)	1(1)	82(96)
6	Cefuroxime	80	1(1)	0(0)	79(99)
7	Ciprofloxacin	86	75(87)	0(0)	11(13)
8	Clindamycin	36	13(36)	0(0)	23(64)
9	Erythromycin	52	10(19)	1(2)	41(79)
10	Gentamycin	124	36(29)	1(1)	87(70)
11	Meropenem	85	74(87)	3(4)	8(9)
12	Piperacillin/Tazobactam	70	21(30)	7(10)	42(60)
13	Trimethoprim/Sulfamethoxazole	91	35(38)	0(0)	56(62)
14	Vancomycin	48	43(90)	1(2)	4(8)

Results/Conclusion

- A total of 357 blood culture samples were analyzed from the NBU, of which
 - 158 were positive (44.2%).
 - More than half (54%) of the cases had late onset sepsis.
 - Gram negative isolates were predominant at 58% and associated with poor outcome with mortality rate of 56.3% (O.R 4, 95% CI: 1.4-11.2, p=0.007).
 - Klebsiella pneumoniae was the leading isolate at 28.9%.
 - High resistance rates above 95% were noted to cephalosporins.
 - Vancomycin and amikacin had high sensitivities of 90% and 88% respectively that of ciprofloxacin and meropenem was 87%.
- Conclusion Gram-negative sepsis predominated by K. pneumoniae accounts for majority of neonatal sepsis cases and is associated with high mortality and morbidity.
- Many isolates demonstrated high sensitivity to vancomycin, amikacin, ciprofloxacin and meropenem.
- High resistance rates to commonly used antibiotics particularly, cephalosporins and benzylpenicillin were noted

Key: IND: Investigational New Drug Application, NDA: New Drug Application, BLA: Biologics License Application

Source: PhRMA adaptation based on Tufts Center for the Study of Drug Development (CSDD) Briefing: "Cost of Developing a New Drug," Nov. 2014. Tufts CSDD & School of Medicine., and US FDA Infographic, "Drug Approval Process," http://www.fda.gov/downloads/Drugs/ResourcesForYou/Consumers/UCM284393.pdf (accessed Jan. 20, 2015).

^{*} The average R&D cost required to bring a new, FDA-approved medicine to patients is estimated to be \$2.6 billion over the past decade (in 2013 dollars), including the cost of the many potential medicines that do not make it through to FDA approval.

Other high impact research carried out within this region

- Kwambai TK, Dhabangi A, Idro R, et al. Malaria Chemoprevention in the Postdischarge Management of Severe Anemia. N Engl J Med. 2020 Dec 3;383(23):2242-2254. doi: 10.1056/NEJMoa2002820
- Li, Q., Remich, S., Miller, S.R. *et al.* Pharmacokinetic evaluation of intravenous artesunate in adults with uncomplicated *falciparum* malaria in Kenya: a phase II study. *Malar J* **13**, 281 (2014). https://doi.org/10.1186/1475-2875-13-281
- The RTS,S Clinical Trials Partnership First Results of Phase 3 Trial of RTS,S/AS01
 Malaria Vaccine in African Children. N Engl J Med 2011;365:1863-1875.
 VOL. 365 NO. 20

Conclusion

- Clinical research improves our lives
 - leads to significant discoveries
 - Improves health care
 - Ensures that patients receive the best care possible.
 - Makes the development of new medicines and treatments possible

Gauge

- Publication in high impact journals
- Number of protocols
- Research funds/dollars
- Protocol deviations/violations
- Audit outcomes
- Enrollment goals and retention

Thank You

References

- 'CEDAM'
- Dr Achola dissertation, UON
- https://undergradresearch.wustl.edu/benefits-undergraduate-
 https://undergradresearch.wustl.edu/benefits-undergraduate-
 <a href="mailto:research#:"research#:~":text=Undergraduate%20research%20can%20help%20you,test%20your%20determination%20and%20perseverance
- Mabvuure NT. Twelve tips for introducing students to research and publishing: a medical student's perspective. Med Teach. 2012;34(9):705-9. doi: 10.3109/0142159X.2012.684915. PMID: 22905656